题目内容
【题目】如图,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC
(1)求证:AE⊥DE;
(2)设以AD为直径的半圆交AB于F,连结DF交AE于G,已知CD=5,AE=8.
①求BC的长;
②求 值.
【答案】
(1)
证明:在平行四边形ABCD中,∵AB∥CD,
∴∠BAD+∠ADC=180°.
又∵AE、DE平分∠BAD、∠ADC,
∴∠DAE+∠ADE=90°,
∴∠AED=90°,
∴AE⊥DE
(2)
解:①在平行四边形ABCD中,∵AD∥BC,AB=CD=5,AD=BC,
∴∠DAE=∠BEA,
又∵AE平分∠BAD,即∠DAE=∠BAE,
∴∠BEA=∠BAE,
∴BE=AB=5,
同理EC=CD=5,
∴BC=BE+EC=10,
②∵AD=BC=10,AE=8,
在Rt△AED中,DE= = =6,
又∵AE是∠BAD的角平分线,
∴∠FAG=∠DAE,
∵AD是直径,
∴∠AFD=90°,
∴tan∠FAG= ,
∴ =tan∠DAE= = = .
【解析】(1)由∠BAD+∠ADC=180°.又因为AE、DE平分∠BAD、∠ADC,推出∠DAE+∠ADE=90°,即可推出∠AED=90°,由此即可解决问题.(2)①只要证明BA=BW,CD=CE即可解决问题.②由tan∠FAG= ,可得 =tan∠DAE= ,求出DE即可解决问题.
练习册系列答案
相关题目