ÌâÄ¿ÄÚÈÝ
ÔÚÖ±½Ç×ø±êϵÄÚÓк¯Êýy=
£¨x£¾0£©ºÍÒ»ÌõÖ±ÏßµÄͼÏó£¬Ö±ÏßÓëx¡¢yÖáÕý°ëÖá·Ö±ð½»ÓÚµãAºÍµãB£¬ÇÒOA=OB=1£¬µãPΪÇúÏßÉÏÈÎÒâÒ»µã£¬ËüµÄ×ø±êÊÇ£¨a£¬b£©£¬ÓɵãPÏòxÖá¡¢yÖá×÷´¹ÏßPM¡¢PN£¨M¡¢NΪ´¹×㣩·Ö±ðÓëÖ±ÏßABÏཻÓÚµãEºÍµãF£®
£¨1£©Èç¹û½»µãE¡¢F¶¼ÔÚÏ߶ÎABÉÏ£¨Èçͼ£©£¬·Ö±ðÇó³öE¡¢FµãµÄ×ø±ê£¨Ö»Ðèд³ö´ð°¸£®²»Ðèд³ö¼ÆËã¹ý³Ì£©£»
£¨2£©µ±µãPÔÚÇúÏßÉÏÒƶ¯£¬ÊÔÇó¡÷OEFµÄÃæ»ý£¨½á¹û¿ÉÓÃa¡¢bµÄ´úÊýʽ±íʾ£©£»
£¨3£©Èç¹ûAF=
£¬Çó
µÄÖµ£®
1 |
2x |
£¨1£©Èç¹û½»µãE¡¢F¶¼ÔÚÏ߶ÎABÉÏ£¨Èçͼ£©£¬·Ö±ðÇó³öE¡¢FµãµÄ×ø±ê£¨Ö»Ðèд³ö´ð°¸£®²»Ðèд³ö¼ÆËã¹ý³Ì£©£»
£¨2£©µ±µãPÔÚÇúÏßÉÏÒƶ¯£¬ÊÔÇó¡÷OEFµÄÃæ»ý£¨½á¹û¿ÉÓÃa¡¢bµÄ´úÊýʽ±íʾ£©£»
£¨3£©Èç¹ûAF=
| ||
2 |
OF |
OE |
£¨1£©µãE£¨a£¬1-a£©£¬µãF£¨1-b£¬b£©£»
£¨2£©S¡÷EOF=S¾ØÐÎMONP-S¡÷EMO-S¡÷FNO-S¡÷EPF£¬
=ab-
a(1-a)-
b(1-b)-
(a+b-1)2£¬
=
(a+b-1)£»
£¨3£©¡ßAF=
µãF£¨1-b£¬b£©
¡à2b2=(
)2
¡àb=
¡à
=
a=
ÓɵãFºÍµãEµÄ×ø±ê¿ÉÒÔÇóµÃ£º
OF=
£¬OE=
£¬
¡à
=
£®
£¨2£©S¡÷EOF=S¾ØÐÎMONP-S¡÷EMO-S¡÷FNO-S¡÷EPF£¬
=ab-
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
£¨3£©¡ßAF=
| ||
2 |
¡à2b2=(
| ||
2 |
¡àb=
| ||
2 |
¡à
| ||
2 |
1 |
2a |
a=
| ||
3 |
ÓɵãFºÍµãEµÄ×ø±ê¿ÉÒÔÇóµÃ£º
OF=
| ||
2 |
| ||||
3 |
¡à
OF |
OE |
3
| ||||
30-4
|
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿