题目内容
【题目】如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点.
(1)求证:是的切线;
(2)已知,,求和的长.
【答案】(1)证明见解析;(2)
【解析】(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;
(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得,由此构建方程即可解决问题;
(1)如图,连接OD,AD,
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
又∵OA=OB,
∴OD∥AC,
∵DG⊥AC,
∴OD⊥FG,
∴直线FG与⊙O相切,即DF是⊙O的切线;
(2)如图,连接BE.∵BD=2,
∴CD=BD=2,
∵CF=2,
∴DF==4,
∴BE=2DF=8,
∵cos∠C=cos∠ABC,
∴,
∴,
∴AB=10,
∴AE=,
∵BE⊥AC,DF⊥AC,
∴BE∥GF,
∴△AEB∽△AFG,
∴,
∴,
∴BG=.
练习册系列答案
相关题目