题目内容
【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进的乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,购进这两种玩具的总资金超过960元但不超过1000元,求商场有哪几种具体的进货方案?最多可以购进乙种玩具多少件?
【答案】(1)甲,乙两种玩具的进价分别是15元/件,25元/件;(2)共有4种方案.具体方案见解析;最多可以购进乙种玩具28件.
【解析】
(1)设甲种玩具进价x元/件,则乙种玩具进价为(40-x)元/件,根据用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48-y)件,根据购进这两种玩具的总资金超过960元但不超过1000元,可列出不等式组求解.
(1)设甲种玩具进价x元/件,则乙种玩具进价为(40-x)元/件,
根据题意,得,
解得x=15,
经检验x=15是原方程的解.
∴40-x=25.
答:甲,乙两种玩具的进价分别是15元/件,25元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48-y)件,
根据题意,得960<15y+25(48-y)≤1000,
解得20≤y<24.
∵y是整数,
∴y取20,21,22,23,共有4种方案.
方案一:购进甲种玩具20件,购进乙种玩具28件,
方案二:购进甲种玩具21件,购进乙种玩具27件,
方案三:购进甲种玩具22件,购进乙种玩具26件,
方案四:购进甲种玩具23件,购进乙种玩具25件,
则最多可以购进乙种玩具28件.
答:(1)甲,乙两种玩具的进价分别是15元/件,25元/件;(2)共有4种方案.方案一:购进甲种玩具20件,购进乙种玩具28件,方案二:购进甲种玩具21件,购进乙种玩具27件,方案三:购进甲种玩具22件,购进乙种玩具26件,方案四:购进甲种玩具23件,购进乙种玩具25件,最多可以购进乙种玩具28件.
【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
对他们的训练成绩作如下分析,其中说法正确的是( )
A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同
C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同