题目内容
【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求∠E的度数.
(3)连接AD,在2的条件下,若CD=,求AD的长.
【答案】
(1)
【解答】证明:如图1,连接OC,AC,CG,
∵AC=CG,
∴,
∴∠ABC=∠CBG,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠OCB=∠CBG,
∴OC∥BG,
∵CD⊥BG,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)
解:∵OC∥BD,
∴△OCF∽△BDF,△EOC∽△EBD,
∴,
∴,
∵OA=OB,
∴AE=OA=OB,
∴OC=OE,
∵∠ECO=90°,
∴∠E=30°;
(3)
解:如图2,过A作AH⊥DE于H,
∵∠E=30°
∴∠EBD=60°,
∴∠CBD=EBD=30°,
∵CD=,
∴BD=3,DE=,BE=6,
∴AE=BE=2,
∴AH=1,
∴EH=,
∴DH=,
在Rt△DAH中,AD=.
【解析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;
(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,
,根据直角三角形的性质即可得到结论;
(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在Rt△DAH中,AD=
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目