题目内容
【题目】如图,反比例函数y= 的图象与一次函数y=k2x+b的图象交于点P(m,﹣1)和Q(1,2)两点,记一次函数与坐标轴的交点分别为A,B,连接OP,OQ.
(1)求两函数的解析式;
(2)求证:△POB≌△QOA.
【答案】
(1)解:将Q(1,2)代入反比例函数 ,得k1=2
∴反比例函数的解析式为
将P(m,﹣1)代入反比例函数 ,得m=﹣2
∴P(﹣2,﹣1)
将P(﹣2,﹣1)和Q(1,2)代入一次函数y=k2x+b,得
解得
∴该一次函数的解析式为y=x+1
(2)解:∵y=x+1,当x=0时,y=1;当y=0时,x=﹣1
∴A(﹣1,0),B(0,1)
∴OA=OB
∴∠QAO=∠PBO
∵OP= = ,OQ= =
∴OP=OQ
∴∠BPO=∠AQO
∴△POB≌△QOA(AAS)
【解析】(1)将已知的点Q的坐标代入反比例函数,求得比例系数k1的值,得到反比例函数解析式;再将点P的坐标代入反比例函数,求得m的值,最后将点P和点Q的坐标代入一次函数,求得k2和b的值,得到一次函数解析式;(2)先根据一次函数求得直线与与坐标轴的交点A、B的坐标,进而根据OA和OB的长相等,得到∠QAO=∠PBO;再根据点P、Q的坐标,求得OP与OQ的长,根据OP与OQ的长相等,得到∠BPO=∠AQO,最后根据AAS得到△POB≌△QOA.
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.
练习册系列答案
相关题目