题目内容

【题目】边长为2 的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.

(1)连接CQ,证明:CQ=AP;
(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE= BC;
(3)猜想PF与EQ的数量关系,并证明你的结论.

【答案】
(1)

证明:如图1,

∵线段BP绕点B顺时针旋转90°得到线段BQ,

∴BP=BQ,∠PBQ=90°.

∵四边形ABCD是正方形,

∴BA=BC,∠ABC=90°.

∴∠ABC=∠PBQ.

∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.

在△BAP和△BCQ中,

∴△BAP≌△BCQ(SAS).

∴CQ=AP


(2)

解:如图1,

∵四边形ABCD是正方形,

∴∠BAC= ∠BAD=45°,∠BCA= ∠BCD=45°,

∴∠APB+∠ABP=180°﹣45°=135°,

∵DC=AD=2

由勾股定理得:AC= =4,

∵AP=x,

∴PC=4﹣x,

∵△PBQ是等腰直角三角形,

∴∠BPQ=45°,

∴∠APB+∠CPQ=180°﹣45°=135°,

∴∠CPQ=∠ABP,

∵∠BAC=∠ACB=45°,

∴△APB∽△CEP,

∴y= x(4﹣x)=﹣ x(0<x<4),

由CE= BC= =

∴y=﹣ x=

x2﹣4x=3=0,

(x﹣3)(x﹣1)=0,

x=3或1,

∴当x=3或1时,CE= BC;


(3)

解:结论:PF=EQ,理由是:

如图,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,

∵∠BPQ=45°,

∴∠GPB=45°,

∴∠GPB=∠PQB=45°,

∵PB=BQ,∠ABP=∠CBQ,

∴△PGB≌△QEB,

∴EQ=PG,

∵∠BAD=90°,

∴F、A、G、P四点共圆,

连接FG,

∴∠FGP=∠FAP=45°,

∴△FPG是等腰直角三角形,

∴PF=PG,

∴PF=EQ.

当F在AD的延长线上时,

如图,同理可得:PF=PG=EQ.


【解析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE= BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.
如图4,当F在AD的延长线上时,同理可得结论.
【考点精析】关于本题考查的全等三角形的性质和等腰三角形的性质,需要了解全等三角形的对应边相等; 全等三角形的对应角相等;等腰三角形的两个底角相等(简称:等边对等角)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网