题目内容

【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M, 求证:①GM=2MC;
②AG2=AFAC.

【答案】
(1)证明:在Rt△ABE和Rt△DBE中,

∴△ABE≌△DBE


(2)证明:①过G作GH∥AD交BC于H,

∵AG=BG,

∴BH=DH,

∵BD=4DC,

设DC=1,BD=4,

∴BH=DH=2,

∵GH∥AD,

= =

∴GM=2MC;

②过C作CN⊥AC交AD的延长线于N,则CN∥AG,

∴△AGM∽△NCM,

=

由①知GM=2MC,

∴2NC=AG,

∵∠BAC=∠AEB=90°,

∴∠ABF=∠CAN=90°﹣∠BAE,

∴△ACN∽△BAF,

=

∵AB=AG,

=

∴2CNAG=AFAC,

∴AG2=AFAC.


【解析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到 = = ,求得GM=2MC; ②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到 = ,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到 = ,等量代换得到 = ,于是得到结论.
【考点精析】本题主要考查了相似三角形的判定与性质的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网