题目内容
【题目】已知:抛物线交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.
(1)如图1,求抛物线的解析式;
(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);
(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.
【答案】(1);(2);(3)D(4,3),8
【解析】
(1)先求出点A,B的坐标,结合AB的长,即可得到答案;
(2)过点D作DK⊥x轴于点K,过点D作DH⊥CE于点H,设∠DAB=α,易得,进而求出CE的长,即可求解;
(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD的延长线于点N,连接CN.易得∠ECF=∠DAB=∠HDE=∠PCF=α,设HE=3k,CP=5k,先证△CFN为等腰三角形,再证PC=PN=5k,由勾股定理得(d﹣3k)2+(d﹣2k)2=(5k)2,可得,结合,即可求解.
(1)∵,令y=0,则(x+2)(x﹣m)=0,解得:,
∴A(﹣2,0),B(m,0),
∵AB=7,
∴m﹣(﹣2)=7,m=5,
∴;
(2)过点D作DK⊥x轴于点K,过点D作DH⊥CE于点H,设∠DAB=α,
∵点D在第一象限内抛物线上,点D的横坐标为d,
∴,
∴,
∵C(0,5),
∴EO=AOtanα=5﹣d,CE=5﹣(5﹣d)=d,
∴;
(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD的延长线于点N,连接CN.
∵EF⊥CE,DH⊥CE,
∴EF∥DH∥AB,
∵设∠DAB=α,∠OCP=2∠DAB,CF平分∠OCP,
∴∠ECF=∠DAB=∠HDE=∠PCF=α,
∵HE:CP=3:5,
∴设HE=3k,CP=5k,
由(2)可知:CE=HD=d,
又∵∠CEF=∠CHD=90°,
∴△CEF≌△DHE(ASA),
∴EF=HE,CF=DE,
∵EF∥DN,NF∥DE,
∴四边形EDNF为平行四边形,
∴EF=HE=DN=3k,CF=DE=FN,∠DNF=∠DEF=α,
∴△CFN为等腰三角形,
∴∠FCN=∠FNC,
∴∠PCN=∠FCN-α=∠FNC-α=∠PNC,
∴PC=PN=5k,
∴PD=2k,
∴CH=d﹣3k,PH=d﹣2k,
∴(d﹣3k)2+(d﹣2k)2=(5k)2,
∴(d﹣6k)(d+k)=0,
∴d=6k,
∴在Rt△DHE中,,
由(2)知,
∴.
∴d=4,
∴D(4,3),.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)求全班学生人数和m的值.
(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |