题目内容
【题目】如图,边长为6的正方形绕点按顺时针方向旋转后得到正方形,交于点,则____________.
【答案】.
【解析】
过点F作FI⊥BC于点I,延长线IF交AD于J,根据含30°直角三角形的性质可求出FI、FJ和JH的长度,从而求出HD的长度.
解:过点F作FI⊥BC于点BC,延长线AD交AD于J,
由题意可知:CF=BC=6,∠FCB=30°,
∴FI=3,CI=
∵JI=CD=6,
∴JF=JI-FI=6-3=3,
∵∠HFC=90°,
∴∠JFH+∠IFC=∠IFC+∠FCB=90°,
∴∠JFH=∠FCB=30°,
设JH=x,则HF=2x,
∴由勾股定理可知:(2x)2=x2+32,
∴x=,
∴DH=DJ-JH=
故答案为:.
练习册系列答案
相关题目
【题目】我们约定:体重在选定标准的%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg),收集并整理得到如下统计表:
男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
体重(kg) | 45 | 62 | 55 | 58 | 67 | 80 | 53 | 65 | 60 | 55 |
根据以上表格信息解决如下问题:
(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:
平均数 | 中位数 | 众数 |
(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.