题目内容
【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.
【答案】(1)y=x2+2x﹣3;(2);(3)E1(﹣1,0),E2(3,0),E3,E4.
【解析】试题分析:(1)将A、D的坐标代入抛物线的解析式中,即可求得待定系数的值.
(2)根据抛物线的解析式即可得到其对称轴及B点的坐标,由于A、B关于抛物线对称轴对称,连接BD,BD与抛物线对称轴的交点即为所求的P点,那么PA+PD的最小值即为BD的长,根据B、D的坐标,即可用勾股定理(或坐标系两点间的距离公式)求出BD的长,也就求得了PA+PD的最小值.
(3)此题可分作两种情况考虑:
①BE∥DG;根据抛物线的解析式可求得C点坐标,可得C、D关于抛物线对称轴对称,即C、D的纵坐标相同,所以CD∥x轴,那么C点就是符合条件的G点,易求得CD的长,根据平行四边形的性质知BE=CD,由此可得到BE的长,将B点坐标向左或向右平移CD个单位即可得到两个符合条件的E点坐标;
②BD∥EG;根据平行四边形的性质知,此时G、D的纵坐标互为相反数,由此可求得G点的纵坐标,将其代入抛物线的解析式中即可求得G点的坐标;那么将G点的横坐标减去3(B、D横坐标差的绝对值),即可得到两个符合条件的E点坐标;
综上所述,得到符合条件的E点坐标.
试题解析:解:(1)将A(﹣3,0),D(﹣2,﹣3)代入y=x2+bx+c,得:
,解得: ;
∴抛物线的解析式为:y=x2+2x﹣3.
(2)由:y=x2+2x﹣3得:
对称轴为: ,
令y=0,则:x2+2x﹣3=0,
∴x1=﹣3,x2=1,
∴点B坐标为(1,0),
而点A与点B关于x=﹣1对称,
∴连接BD与对称轴的交点即为所求的P点.
过点D作DF⊥x轴于点F,则:DF=3,BF=1﹣(﹣2)=3,
在Rt△BDF中,BD=,
∵PA=PB,
∴PA+PD=PB+PD=BD=,
即PA+PD的最小值为.
(3)存在符合条件的点E,
①在y=x2+2x﹣3中,令x=0,则有:y=﹣3,故点C坐标为(0,﹣3),
∴CD∥x轴,
∴在x轴上截取BE1=BE2=CD=2,得BCDE1和BDCE2,
此时:点C与点G重合,E1(﹣1,0),E2(3,0).
②∵BF=DF=3,∠DFB=90°,
∴∠FBD=45°,
当G3E3∥BD且相等时,有G3E3DB,作G3N⊥x轴于点N,
∵∠G3E3B=∠FBD=45°,∠G3NE3=90°,G3E3=BD=,
∴G3N=E3N=3;
将y=3代入y=x2+2x﹣3
得: ,
∴E3的坐标为: ,
即,
同理可得:E4,
综上所述:存在这样的点E,所有满足条件的E点坐标为:
E1(﹣1,0),E2(3,0),
E3,E4.