题目内容

如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0)。

(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;
(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
(1)(-6,12)(2)y=-x+4(3)结论:存在。点Q的坐标为:(2 ,-2 ),(-2 ,2 ),(4,4),(-2,2)
解:(1)过点B作BF⊥x轴于F,

在Rt△BCF中
∵∠BCO=45°,BC=12,∴CF="BF=12" 。  
∵C 的坐标为(-18,0),∴AB=OF=6。
∴点B的坐标为(-6,12)。
(2)过点D作DG⊥y轴于点G,
∵OD=2BD,∴OD=OB。
∵AB∥DG,∴△ODG∽△OBA 。     
,AB=6,OA=12,∴DG=4,OG=8。∴D(-4,8),E(0,4)。
设直线DE解析式为y=kx+b(k≠0)
,解得。∴直线DE解析式为y=-x+4。
(3)结论:存在。
点Q的坐标为:(2 ,-2 ),(-2 ,2 ),(4,4),(-2,2)。
(1)构造等腰直角三角形BCF,求出BF、CF的长度,即可求出B点坐标。
(2)已知E点坐标,欲求直线DE的解析式,需要求出D点的坐标.构造△ODG∽△OBA,由线段比例关系求出D点坐标,从而可以求出直线DE的解析式。
(3)如图所示,符合题意的点Q有4个:

设直线y=-x+4分别与x轴、y轴交于点E、点F,
则E(0,4),F(4,0),OE=OF=4,EF=4
①菱形OEP1Q1,此时OE为菱形一边。
则有P1E=P1Q1=OE=4,P1F=EF-P1E=4-4。
易知△P1NF为等腰直角三角形,
∴P1N=NF=P1F=4-2
设P1Q1交x轴于点N,则NQ1=P1Q1-P1N=4-(4-2)=2
又ON=OF-NF=2,∴Q1(2 ,-2)。
②菱形OEP2Q2,此时OE为菱形一边。此时Q2与Q1关于原点对称,∴Q2(-2,2)。
③菱形OEQ3P3,此时OE为菱形一边。
此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4)。
④菱形OP4EQ4,此时OE为菱形对角线。
由菱形性质可知,P4Q4为OE的垂直平分线,
由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2)。
由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(-2,2)。
综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形,点Q的坐标为:
Q1(2,-2),Q2(-2,2),Q3(4,4),Q4(-2,2)。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网