题目内容
【题目】如图所示.在△ABC中,∠ACB=90°,AC=BC,过点C任作一直线PQ,过点A作于点M,过点B作BNPQ于点N.
(1)如图①,当M、N在△ABC的外部时,MN、AM、BN有什么关系呢?为什么?
(2)如图②,当M、N在△ABC的内部时,(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请指出MN与AM、BN之间的数关系并说明理由.
【答案】(1)MN=AM+BN,理由见解析;
(2)(1)中的结论不成立,MN与AM、BN之间的数量关系为MN=AM-BN.理由见解析.
【解析】
(1)先证明∠MAC=∠NCB,根据“AAS”证明△ACM≌△CBN,得出AM=CN,CM=BN,则MN=MC+CN=AM+BN;
(2)与(1)证明方法一样可得到△ACM≌△CBN,得出AM=CN,CM=BN,故MN=CN-CM=AM-BN.
(1)MN=AM+BN,理由是:
∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=MC+CN=AM+BN;
即MN=AM+BN;
(2)(1)中的结论不成立,MN与AM、BN之间的数量关系为MN=AM-BN.理由如下:
∵AM⊥PQ于M,过B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=CN-CM=AM-BN.
练习册系列答案
相关题目