题目内容
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
【答案】B
【解析】试题分析:①由顶点坐标公式判断即可;
②根据图象得到一次函数y=kx+b为增函数,抛物线当x大于0时为增函数,本选项正确;
③AB长不可能为5,由A、B的横坐标求出AB为5时,直线AB与x轴平行,即k=0,与已知矛盾;
④三角形OAB不可能为等边三角形,因为OA与OB不可能相等;
⑤直线y=-kx+b与y=kx+b关于y轴对称,作出对称后的图象,故y=-kx+b与抛物线交点横坐标分别为-3与2,找出一次函数图象在抛物线上方时x的范围判断即可.
试题解析:①抛物线y=ax2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确;
②根据图象得:直线y=kx+b(k≠0)为增函数;抛物线y=ax2(a≠0)当x>0时为增函数,则x>0时,直线与抛物线函数值都随着x的增大而增大,本选项正确;
③由A、B横坐标分别为-2,3,若AB=5,可得出直线AB与x轴平行,即k=0,与已知k≠0矛盾,故AB不可能为5,本选项错误;
④若OA=OB,得到直线AB与x轴平行,即k=0,与已知k≠0矛盾,∴OA≠OB,即△AOB不可能为等边三角形,本选项错误;
⑤直线y=-kx+b与y=kx+b关于y轴对称,如图所示:
可得出直线y=-kx+b与抛物线交点C、D横坐标分别为-3,2,由图象可得:当-3<x<2时,ax2<-kx+b,即ax2+kx<b,
则正确的结论有①②⑤.
故选B.