题目内容

【题目】如图,在平面直角坐标系中,已知矩形的三个顶点.以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点运动,运动时间为秒.过点轴交抛物线于点,交于点

直接写出点的坐标,并求出抛物线的解析式;

为何值时,的面积最大?最大值为多少?

【答案】(1)(2)1

【解析】

(1)根据矩形的性质可以写出点A得到坐标;由顶点A的坐标可设该抛物线的顶点式方程为y=a(x-1)2+4,然后将点C的坐标代入,即可求得系数a的值(利用待定系数法求抛物线的解析式);
(2)利用待定系数法求得直线AC的方程y=-2x+6;由图形与坐标变换可以求得点P的坐标(1,4-t),据此可以求得点E的纵坐标,将其代入直线AC方程可以求得点E或点G的横坐标;然后结合抛物线方程、图形与坐标变换可以求得GE=4-、点A到GE的距离为,C到GE的距离为2-;最后根据三角形的面积公式可以求得S△ACG=S△AEG+S△CEG=-(t-2)2+1,由二次函数的最值可以解得t=2时,S△ACG的最大值为1.

由题意知,可设抛物线解析式为

∵抛物线过点

解得

∴抛物线的解析式为,即

∴可求直线的解析式为

∵点

∴将代入中,解得点的纵坐标为

∴把,代入抛物线的解析式中,可求点的纵坐标为

又点的距离为的距离为

时,的最大值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网