题目内容
如图,已知AB、AC是⊙O的两条弦,且AB=AC,若∠BOC=100°,则∠BAO=______°.
∵AB=AC,
而OA=OA,OB=OC,
∴△OAB≌△OAC,
∴∠AOB=∠AOC,
又∵∠AOB+∠AOC+∠BOC=360°,∠BOC=100°,
∴∠AOB+∠AOC=360°-100°=260°,
∴∠AOB=
×260°=130°,
又∵OB=OA,
∴∠BAO=∠B,
而∠BAO+∠B+∠AOB=180°,
∴∠BAO=
(180°-130°)=25°.
故答案为25°.
而OA=OA,OB=OC,
∴△OAB≌△OAC,
∴∠AOB=∠AOC,
又∵∠AOB+∠AOC+∠BOC=360°,∠BOC=100°,
∴∠AOB+∠AOC=360°-100°=260°,
∴∠AOB=
1 |
2 |
又∵OB=OA,
∴∠BAO=∠B,
而∠BAO+∠B+∠AOB=180°,
∴∠BAO=
1 |
2 |
故答案为25°.
练习册系列答案
相关题目