题目内容

已知四边形ABCD内接于⊙O,分别延长AB和DC相交于点P,
CB
=
CD
,AB=12,CD=6,PB=8,则⊙O的面积为______.
由切割线定理得:PB×PA=PC×PD,
∴8×(8+12)=PC×(PC+6),
∴PC=10,
连接AC,
∵四边形ABCD内接于圆O,
∴∠PCB=∠PAD,
∵∠P=∠P,
∴△PCB△PAD,
PC
PA
=
BC
AD

∵弧BC=弧CD,
∴BC=CD=6,
∵PC=10,PA=8+12,
10
8+12
=
6
AD

∴AD=12=AB,
∴弧AB=弧AD,
∵弧BC=弧CD,
∴弧ABC=弧ADC,
∴AC是圆的直径,
∴∠ABC=90°,
由勾股定理得:AC=
AB2+BC2
=6
5

∴圆O的半径是3
5
,面积是π•(3
5
)
2
=45π,
故答案为:45π.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网