题目内容
【题目】我县第一届运动会需购买A,B两种奖品,若购买A种奖品4件和B种奖品3件,共需85元;若购买A种奖品3件和B种奖品1件,共需45元.
(1)求A、B两种奖品的单价各是多少元?
(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买总费用W元,写出W(元)与m(件)之间的函数关系式,求出自变量m的取值范围,并设计出购买总费用最少的方案.
【答案】(1)A奖品的单价是10元,B奖品的单价是15元;(2)购买总费用最少的方案是购买A奖品75件,B奖品25件
【解析】试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;
(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.
试题解析:(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得
解得:
答:A奖品的单价是10元,B奖品的单价是15元.
(2)由题意,得W=10m+15(100-m)=-5m+1500.
∴
解得:70≤m≤75.
∴W=-5m+1500(70≤m≤75)
∵k=-5<0,W随m的增大而减小
∴当m=75时,W有最小值=-5×75+1500=1125,此时100-m=100-75=25
答:购买总费用最少的方案是购买A奖品75件,B奖品25件。
【题目】已知点A,B在数轴上分别表示m,n,其中m<n.
(1)填写下表;
m | 3 | ﹣6 | ﹣5 |
n | 5 | 4 | ﹣4 |
A,B两点的距离 |
|
|
|
(2)若A,B两点的距离为d,则d与m,n的数量关系为 ;
(3)若S=|x﹣3|+|x﹣4|+|x﹣5|+…+|x﹣2018|,求S的最小值,并写出当S取最小值时x的取值范围.