题目内容
【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”。图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:
(1)动点P从点A运动至点C需要________秒;
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少?
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
【答案】(1)19秒;(2)相遇点M所对应的数是;(3)t的值为2、6.5、11或17
【解析】
(1)根据路程除以速度等于时间,可得答案;
(2)根据相遇时P,Q运动的时间相等,可得方程,解方程,可得答案;
(3)根据PO与BQ相等,可得方程,解方程,可得答案.
解:(1)点P运动至点C时,所需时间t=(秒);
(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=.
则,
解得,故相遇点M所对应的数是;
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:
①动点Q在CB上,动点P在AO上,则:8-t=10-2t,解得:t=2.
②动点Q在CB上,动点P在OB上,则:8-t=(t-5)×1,解得:t=6.5.
③动点Q在BO上,动点P在OB上,则:2(t-8)=(t-5)×1,解得:t=11.
④动点Q在OA上,动点P在BC上,则:10+2(t-15)=t-13+10,解得:t=17.
综上所述:t的值为2、6.5、11或17.
【题目】今年“十一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人),已知9月30日的游客人数为0.3万人,请回答下列问题:
日 期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数变化 | +1.8 | +0.8 | +0.2 | -0.4 | -0.8 | +0.2 | -1.0 |
(1)七天内游客人数最多的是 日,最少的是 日;
(2)若以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数变化情况?
(3)求这7天的游客人数是多少万人.