题目内容
【题目】某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
【答案】(1)每一个篮球的进价是40元,每一个排球的进价是36元;(2)该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.
【解析】
(1)设每一个篮球的进价是x元,则每一个排球的进价是0.9x元,根据用3600元购买排球的个数要比用3600元购买篮球的个数多10个列出方程,解之即可得出结论;
(2)设文体商店计划购进篮球m个,总利润y元,根据题意用m表示y,结合m的取值范围和m为整数,即可得出获得最大利润的方案.
解:(1)设每一个篮球的进价是x元,则每一个排球的进价是0.9x元,依题意有
,解得x=40,
经检验,x=40是原方程的解,
0.9x=0.9×40=36.
故每一个篮球的进价是40元,每一个排球的进价是36元;
(2)设文体商店计划购进篮球m个,总利润y元,则
y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,
依题意有,
解得0<m≤25且m为整数,
∵m为整数,
∴y随m的增大而增大,
∴m=25时,y最大,这时y=6×25+5400=5550,
100-25=75(个).
故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.
练习册系列答案
相关题目