题目内容

分析:先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.
解答:解:∵∠A=80°,∠1=15°,∠2=40°,
∴∠OBC+∠OCB=180°-∠A-∠1-∠2=180°-80°-15°-40°=45°,
∵∠BOC+(∠OBC+∠OCB)=180°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-45°=135°.
故选C.
∴∠OBC+∠OCB=180°-∠A-∠1-∠2=180°-80°-15°-40°=45°,
∵∠BOC+(∠OBC+∠OCB)=180°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-45°=135°.
故选C.
点评:本题考查的是三角形内角和定理,即三角形内角和是180°.

练习册系列答案
相关题目