题目内容
【题目】求二次函数的图象如图所示,其对称轴为直线,与轴的交点为、,其中,有下列结论:①;②;③;④;⑤;其中,正确的结论有( )
A.5B.4C.3D.2
【答案】C
【解析】
由抛物线开口方向得a>0,由抛物线的对称轴为直线得>0,由抛物线与y轴的交点位置得c<0,则abc<0;由于抛物线与x轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<<-2;抛物线的对称轴为直线,且c<-1,时,;抛物线开口向上,对称轴为直线,当时,,当得:,且,∴,即;对称轴为直线得,由于时,,则0,所以0,解得,然后利用得到.
∵抛物线开口向上,∴a>0,
∵抛物线的对称轴为直线,∴b=2a>0,
∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,
所以①错误;
∵抛物线与x轴一个交点在点(0,0)与点(1,0)之间,而对称轴为,由于抛物线与x轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<<-2,所以②正确;
∵抛物线的对称轴为直线,且c<-1,∴当时,, 所以③正确;
∵抛物线开口向上,对称轴为直线,∴当时,,
当代入得:,
∵,∴,即,所以④错误;
∵对称轴为直线,∴,
∵由于时,,∴0,所以0,解得,
根据图象得,∴,所以⑤正确.
所以②③⑤正确, 故选:C.
练习册系列答案
相关题目