题目内容
【题目】如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME.
(1)试猜想DM与ME的关系,并证明你的结论.
(2)若将图1中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为______.
(3)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的点,则DM和ME的关系为______,并说明理由。
【答案】DM=ME且DM⊥MEDM=ME且DM⊥ME
【解析】
(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明;(2)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明;(3)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明.
(1)DM=ME.
证明:如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中, ,
∴△FME≌△AMH(ASA),
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
(2)如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中, ,
∴△FME≌△AMH(ASA),
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四边形ABCD和CEFG是正方形,
∴AD=CD,CE=CF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵MH=ME,
∴DM⊥ME.
故答案为:DM=ME且DM⊥ME.
(3)如图2,连接AE,
∵四边形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一条直线上,
在Rt△ADF中,AM=MF,
∴DM=AM=MF,∠MDA=∠MAD,
∴∠DMF=2∠DAM.
在Rt△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
∴∠MAE=∠MEA,
∴∠FME=2∠MAE,
易证△ADM≌△AEM,则∠DAM=∠EAM,
∴∠DME=2∠DAE=90°,
即DM⊥ME.
综上所述,DM=ME且DM⊥ME.
【题目】请你用学习“一次函数”时积累的经验和方法研究函数的图象和性质,并解决问题.
完成下列步骤,画出函数的图象;
列表、填空;
x | 0 | 1 | 2 | 3 | |||||
y | 3 | ______ | 1 | ______ | 1 | 2 | 3 |
描点:
连线
观察图象,当x______时,y随x的增大而增大;
结合图象,不等式的解集为______.