题目内容
【题目】如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度数;
(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.
【答案】(1)∠BOD=40°;(2)110°或70°.
【解析】
试题(1)设∠BOD=x,则∠AOD=3x+20,根据邻补角的定义可得方程3x+20+x=180,解得x=40,即∠BOD=40°;(2)根据角平分线的性质可得∠BOE=∠BOD=20°,如图,∠EOF=90°有两种情况,①∠BOF′=∠EOF′+∠BOE=90°+20°=110°,②∠BOF=∠EOF﹣∠BOE=90°﹣20°=70°.
试题解析:解:(1)设∠BOD=x,则∠AOD=3x+20°,
由邻补角互补,得∠AOD+∠BOD=180°,
即3x+20°+x=180°,
解得x=40°.
即∠BOD=40°;
(2)如图:
由射线OE平分∠BOD,得
∠BOF=∠BOD=×40°=20°,
由角的和差,得∠BOF′=∠EOF′+∠BOE=90°+20°=110°,
∠BOF=∠EOF﹣∠BOE=90°﹣20°=70°.
练习册系列答案
相关题目