题目内容

【题目】如图,在正方形ABCD中,EDC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠EFD=15°,则∠CDF的度数为__

【答案】30°

【解析】

由旋转前后的对应边和对应角相等可知,一个特殊三角形ECF为等腰直角三角形,可知∠EFC=45°,进而求出∠CFD=60°,因为三角形DCF是直角三角形,所以可以求出∠CDF的度数为30°.

∵△BCE绕点C顺时针方向旋转90°得到DCF,

CE=CF,

∵四边形ABCD是正方形,

∴∠DCB=90°,

∴∠DCF=90°,

∴∠CEF=CFE=45°,

∵∠EFD=15°,

∴∠CFD=60°,

∴∠CDF=90°﹣60°=30°

故答案为:30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网