题目内容
【题目】如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)
【答案】(1)证明见解析;(2).
【解析】
(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;
(2)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.
解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.
∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.
在△AOE和△BOF中
,
∴△AOE≌△BOF(ASA),
∴AE=BF,
∴BE+EF=BE+AE=AB
在Rt△AOB中,AB2=OA2+OB2,且OA=OB,
∴(BE+BF)2=2OB2,
(2)∵△AOE≌△BOF,
∴S△AOE=S△BOF,
∴重叠部分的面积=S△AOB=S正方形ABCD=a2.
故答案为:a2.
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.