题目内容
【题目】二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标.
【答案】(1)y=x2﹣x﹣1;(2)D坐标为(﹣1,0).
【解析】
(1)根据二次函数y=ax2+bx+c的图象过A,B和C三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;
(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标
解:(1)把A(2,0),B(0,﹣1)和C(4,5)三点代入抛物线解析式y=ax2+bx+c得,
解得:.
所以二次函数的解析式为y=x2﹣x﹣1;
(2)当y=0时,得 x2﹣x﹣1=0;
解得x1=2,x2=﹣1,
∴点D坐标为(﹣1,0).
【题目】某公司有型产品件,型产品件,分配给下属甲、乙两个商店销售,其中件给甲店,件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:
型利润 | 型利润 | |
甲店 | ||
乙店 |
(1)设分配给甲店型产品x件,则:
①分配给乙店的型产品_________件;
②分配给乙店的型产品_________件.
(2)这家公司卖出这件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;
(3)若公司要求总利润不低于元,说明有多少种不同分配方案,并将各种方案设计出来.
【题目】某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:
其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:
测试项目 | 测试成绩/分 | ||
甲 | 乙 | 丙 | |
笔试 | 92 | 90 | 95 |
面试 | 85 | 95 | 80 |
图二是某同学根据上表绘制的一个不完全的条形图.
请你根据以上信息解答下列问题:
(1)补全图一和图二;
(2)请计算每名候选人的得票数;
(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?