题目内容
【题目】如图,在正方形ABCD中,AB=10,点E在正方形内部,且AE⊥BE,cot∠BAE=2,如果以E为圆心,r为半径的⊙E与以CD为直径的圆相交,那么r的取值范围为_____.
【答案】
【解析】
设AB的中点为G,连接EG,延长BE交CD于H,根据直角三角形的性质得到EG=AB=5,根据三角函数的定义得到CH=BC=CD=5,推出点H是以CD为直径的圆的圆心,设BE=k,AE=2k,得到BE=2,根据勾股定理得到BH==5,求得EH=BH﹣BE=3,于是得到结论.
解:设AB的中点为G,
连接EG,延长BE交CD于H,
∵AE⊥BE,
∴∠AEB=90°,
∴EG=AB=5,
∵在正方形ABCD中,∠C=∠ABC=90°,
∴∠BAE+∠ABE=∠ABE+∠CBH=90°,
∴∠CBH=∠BAE,
∴cot∠BAE=cot∠CBH==2,
∴CH=BC=CD=5,
∴点H是以CD为直径的圆的圆心,
设BE=k,AE=2k,
∴AB=k=10,
∴k=2,
∴BE=2,
∵∠C=90°,BC=10,CH=5,
∴BH= =5,
∴EH=BH﹣BE=3 ,
∵r为半径的⊙E与以CD为直径的圆相交,
∴r的取值范围为,
故答案为:.
【题目】如今很多初中生喜欢购头饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此某班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A.白开水,B.瓶装矿泉水,C.碳酸饮料,D.非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题
(1)这个班级有多少名同学?并补全条形统计图;
(2)若该班同学每人每天只饮用一种饮品(每种仅限一瓶,价格如下表),则该班同学每天用于饮品的人均花费是多少元?
饮品名称 | 白开水 | 瓶装矿泉水 | 碳酸饮料 | 非碳酸饮料 |
平均价格(元/瓶) | 0 | 2 | 3 | 4 |
(3)为了养成良好的生活习惯,班主任决定在饮用白开水的5名班委干部(其中有两位班长记为A,B,其余三位记为C,D,E)中随机抽取2名班委干部作良好习惯监督员,请用列表法或画树状图的方法求出恰好抽到2名班长的概率.