题目内容

【题目】为了发展学生的核心素养,培养学生的综合能力,某中学利用阳光大课间,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用下面的折线统计图表示:(甲为实线,乙为虚线)

(1)依据折线统计图,得到下面的表格:

射击次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成绩(环)

8

9

7

9

8

6

7

10

8

乙的成绩(环)

6

7

9

7

9

10

8

7

10

其中________,________;

(2)甲成绩的众数是________环,乙成绩的中位数是________环;

(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?

(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到11女的概率.

【答案】(1)8、7;(2)8,7;(3)甲成绩更稳定;(4)

【解析】从折线图中得出的值.

根据众数,中位数的定义即可求出.

甲乙的射击成绩,再利用方差的公式计算,即可得出答案.

列表表示出所有的情况,根据概率的求法计算概率.

(1)由折线统计图知a=8、b=7,
故答案为:8、7;
(2)甲射击成绩次数最多的是8环、乙射击成绩次数最多的是7环,
甲成绩的众数是8环、乙成绩的众数为7环;
(3)甲成绩的平均数为=8(环),
所以甲成绩的方差为×[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=1.2(环2),
乙成绩的平均数为=8(环),
所以乙成绩的方差为×[(6-8)2+4×(7-8)2+(8-8)2+2×(9-8)2+2×(10-8)2]=1.8(环2),
故甲成绩更稳定;
(4)用A、B表示男生,用a、b表示女生,列表得:

A

B

a

b

A

AB

Aa

Ab

B

BA

Ba

Bb

a

aA

aB

ab

b

bA

bB

ba

∵共有12种等可能的结果,其中一男一女的有8种情况,
∴恰好选到11女的概率为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网