题目内容

【题目】如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.
(1)求证:DE=DF;
(2)若∠ABC=30°,∠C=45°,DE=4,求CF的长.

【答案】
(1)证明:∵EF垂直平分BD,

∴EB=ED,FB=FD.

∵BD平分∠ABC交AC于D,

∴∠ABD=∠CBD.

∵∠ABD+∠BEG=90°,∠CBD+∠BFG=90°,

∴∠BEG=∠BFG.

∴BE=BF.

∴四边形BFDE是菱形.

∴DE=DF


(2)解:过D作DH⊥CF于H.

∵四边形BFDE是菱形,

∴DF∥AB,DE=DF=4.

在Rt△DFH中,∠DFC=∠ABC=30°,

∴DH=2,FH= DH=2

在Rt△CDH中,∠C=45°,

∴DH=HC=2,

∴CF=CH+FH=2+2


【解析】(1)只要证明四边形BFDE是菱形即可;(2)在Rt△DFH中,求出DH、FH,在Rt△DHC中,求出CH即可解决问题;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网