题目内容

【题目】如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交BC于点F,连接EF.
(1)求证:EF=CF;
(2)当 = 时,求EF的长.

【答案】
(1)证明:∵正方形ABGD,

又∵DE⊥DC,

∴∠ADE+∠EDG=90°=∠GDC+∠EDG,

∴∠ADE=∠GDC.

又∵∠A=∠DGC,

且AD=GD,

在△ADE与△GDC中,

∴△ADE≌△GDC(ASA).

∴DE=DC,且AE=GC.

在△EDF和△CDF中,

∴△EDF≌△CDF(SAS).

∴EF=CF


(2)解:∵ =

∴AE=GC=4.

设EF=x,则BF=16﹣CF=16﹣x,BE=12﹣4=8.

由勾股定理,得x2=(16﹣x)2+82

解之,得x=10,

即EF=10


【解析】(1)根据正方形的性质和全等三角形的判定和性质证明即可;(2)设EF=x,根据勾股定理解答即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网