题目内容

【题目】如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.

(1)求证:CE是⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.

【答案】
(1)

解:连接AC,

∵点CD是半圆O的三等分点,

∴∠DAC=∠CAB,

∵OA=OC,

∴∠CAB=∠OCA,

∴∠DAC=∠OCA,

∴AE∥OC(内错角相等,两直线平行)

∴∠OCE=∠E,

∵CE⊥AD,

∴∠OCE=90°,

∴OC⊥CE,

∴CE是⊙O的切线


(2)

解:

四边形AOCD为菱形.

理由是:

∴∠DCA=∠CAB,

∴CD∥OA,

又∵AE∥OC,

∴四边形AOCD是平行四边形,

∵OA=OC,

∴平行四边形AOCD是菱形.


【解析】(1)连接AC,由题意得 , ∠DAC=∠CAB,即可证明AE∥OC,从而得出∠OCE=90°,即可证得结论;
(2)四边形AOCD为菱形.由,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);
【考点精析】解答此题的关键在于理解菱形的判定方法的相关知识,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形,以及对切线的判定定理的理解,了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网