题目内容
【题目】在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为( )
A.
B.
C.3
D.
【答案】A
【解析】解:以点A,O,B为顶点的三角形是直角三角形,
当直角顶点是A和O时,直线y=kx+6上各存在一个点B满足条件,
要以O、A、B为顶点所作的直角三角形有且只有三个时,直角顶点是B的△AOB只需存在一个,
所以,以OA为直径的圆C与直线y=kx+6相切,
如图,
设切点为B,直线y=kx+6与x轴、y轴分别交于点B'、D,连接CB,
在y=kx+6中令y=0,得x=6,
∴OD=6,且OC= OA=2,
∴CD=4,
在Rt△CDB中,BC=2,CD=4,
∴sin∠BDC= = ,
∴∠ODB'=30°,
在Rt△OB'D中,∠ODB'=30°,OD=6,
∴tan∠ODB'= ,
∴tan30°= ,
∴OB'=6tan30°=2 ,
∵k>0,
∴B'(﹣2 ,0),
将点B'(﹣2 ,0)代入y=kx+6中,得,﹣2 k+6=0,
∴k= ,
故选A.
【考点精析】关于本题考查的直线与圆的三种位置关系和锐角三角函数的定义,需要了解直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数才能得出正确答案.
【题目】今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.
等级 | 得分x(分) | 频数(人) |
A | 95≤x≤100 | 4 |
B | 90≤x<95 | m |
C | 85≤x<90 | n |
D | 80≤x<85 | 24 |
E | 75≤x<80 | 8 |
F | 70≤x<75 | 4 |
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为 , 表中:m= , n=;扇形统计图中,E等级对应扇形的圆心角α等于度;
(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.