题目内容
【题目】如图,△A1B1A2 , △A2B2A3 , △A3B3A4 , …,△AnBnAn+1都是等腰直角三角形,其中点A1、A2、…、An在x轴上,点B1、B2、…、Bn在直线y=x上,已知OA1=1,则OA2015的长为 .
【答案】22014
【解析】解:因为OA1=1,
∴OA2=2,OA3=4,OA4=8,
由此得出OAn=2n﹣1 ,
所以OA2015=22014 ,
所以答案是:22014 .
【考点精析】通过灵活运用等腰直角三角形和一次函数的图象和性质,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远即可以解答此题.
练习册系列答案
相关题目
【题目】今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.
等级 | 得分x(分) | 频数(人) |
A | 95≤x≤100 | 4 |
B | 90≤x<95 | m |
C | 85≤x<90 | n |
D | 80≤x<85 | 24 |
E | 75≤x<80 | 8 |
F | 70≤x<75 | 4 |
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为 , 表中:m= , n=;扇形统计图中,E等级对应扇形的圆心角α等于度;
(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.