题目内容

如图所示,在四边形ABCD中,AM=MN=ND,BE=EF=FC,四边形ABEM,MEFN,NFCD的面积分别记为S1,S2和S3,求
S2
S1+S3
=?
(提示:连接AE、EN、NC和AC)
如图a所示:连接AE、EN和NC,设四边形AECN的面积为S,
∵AM=MN=ND,BE=EF=FC,
∴S△AEM=S△MEN,S△CNF=S△EFN
上面两个式子相加得S△AEM+S△CNF=S2
并且四边形AECN的面积S=2S2,即:S2=
1
2
S,S△AEM+S△CNF=
1
2
S.
连接AC,如图b所示:
∵AM=MN=ND,BE=EF=FC,
∴CE=2BE,NA=2DN,
∴S△ABE=
1
2
S△AEC,S△CDN=
1
2
S△CNA
上面两个式子相加得S△ABE+S△CDN=
1
2
×四边形AECN的面积=
1
2
S,
所以,S△AEM+S△CNF+S△ABE+S△CDN=
1
2
S+
1
2
S=S,
因此S1+S3=S,
S2
S1+S3
=
1
2
S
S
=
1
2

答:
S2
S1+S3
=
1
2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网