题目内容

【题目】两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.
(1)利用图2证明AC=BD且AC⊥BD;
(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.

【答案】
(1)证明:如图2中,延长BD交OA于G,交AC于E.

∵∠AOB=∠COD=90°,

∴∠AOC=∠DOB,

在△AOC和△BOD中,

∴△AOC≌△BOD,

∴AC=BD,∠CAO=∠DBO,

∵∠DBO+∠GOB=90°,

∵∠OGB=∠AGE,

∴∠CAO+∠AGE=90°,

∴∠AEG=90°,

∴BD⊥AC.


(2)解:如图3中,设AC=x,

∵BD、CD在同一直线上,BD⊥AC,

∴△ABC是直角三角形,

∴AC2+BC2=AB2

∴x2+(x+17)2=252

解得x=7,

∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,

∴∠α=∠ABC,

∴sinα=sin∠ABC= =


【解析】(1)如图2中,延长BD交OA于G,交AC于E,只要证明△AOC≌△BOD即可解决问题.(2)如图3中,设AC=x,在RT△ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC= 即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网