题目内容
【题目】两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.
(1)利用图2证明AC=BD且AC⊥BD;
(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.
【答案】
(1)证明:如图2中,延长BD交OA于G,交AC于E.
∵∠AOB=∠COD=90°,
∴∠AOC=∠DOB,
在△AOC和△BOD中,
,
∴△AOC≌△BOD,
∴AC=BD,∠CAO=∠DBO,
∵∠DBO+∠GOB=90°,
∵∠OGB=∠AGE,
∴∠CAO+∠AGE=90°,
∴∠AEG=90°,
∴BD⊥AC.
(2)解:如图3中,设AC=x,
∵BD、CD在同一直线上,BD⊥AC,
∴△ABC是直角三角形,
∴AC2+BC2=AB2,
∴x2+(x+17)2=252,
解得x=7,
∵∠ODC=∠α+∠DBO=45°,∠ABC+∠DBO=45°,
∴∠α=∠ABC,
∴sinα=sin∠ABC= =
【解析】(1)如图2中,延长BD交OA于G,交AC于E,只要证明△AOC≌△BOD即可解决问题.(2)如图3中,设AC=x,在RT△ABC中,利用勾股定理求出x,再根据sinα=sin∠ABC= 即可解决问题.
练习册系列答案
相关题目