题目内容

【题目】如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是(
A.2
B.4
C.4
D.8

【答案】C
【解析】解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,

∵∠AMB=45°,

∴∠AOB=2∠AMB=90°,

∴△OAB为等腰直角三角形,

∴AB= OA=2

∵S四边形MANB=S△MAB+S△NAB

∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,

即M点运动到D点,N点运动到E点,

此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB= ABCD+ ABCE= AB(CD+CE)= ABDE= ×2 ×4=4

故选C.

【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网