题目内容
【题目】如图,△ABC的高BD与CE相交于点O,OD=OE,AO的延长线交BC于点M,请你从图中找出几对全等的直角三角形,并说明理由.
【答案】△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD.理由见解析.
【解析】
试题△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD,利用全等三角形的判定可证明,做题时,要结合已知条件与三角形全等的判定方法逐个验证.
试题解析:△ADO≌△AEO,△DOC≌△EOB,△COF≌△BOF,△ACF≌△ABF,△ADB≌△AEC,△BCE≌△CBD.
理由如下:
在△ADO与△AEO中,∠ADO=∠AEO=90°,
,
∴△ADO≌△AEO(HL),
∴∠DAO=∠EAO,AD=AE,
在△DOC与△EOB中,,
∴△DOC≌△EOB(ASA),
∴DC=EB,OC=OB,
∴DC+AD=EB+AE,即AC=AB,
∵∠DAO=∠EAO,
∴AM⊥BC,CM=BM,
在△COF与△BOF中,∠OMC=∠OMB=90°,
,
∴△COF≌△BOF(HL),
在△ACF与△ABF中,∠AFC=∠AFB=90°,
,
∴△ACF≌△ABF(HL),
在△ADB与△AEC中,
,
∴△ADB≌△AEC(SAS),
在△BCE与△CBD中,∠BEC=∠CDB=90°,
,
∴△BCE≌△CBD(HL).
练习册系列答案
相关题目