题目内容

【题目】如图:在ABC中,C=90°,AC=BC,过点C在ABC外作直线MN,AMMN于M,BNMN于N。

(1)求证:MN=AM+BN

(2)若过点C在ABC内作直线MN,AMMN于M,BNMN于N,则AM、BN与MN之间有什么关系?请说明理由。

【答案】(1)见解析;(2)MN=BN-AM

【解析】

试题分析:1根据同角的余角相等可得MAC=NCB,又AMC=CNB=90°AC=BC即可AMC≌△CNB,从而可得AM=CNMC=BN即可得到结论

2)类似于(1)的方法,证AMC≌△CNB,从而有AM=CNMC=BN,可推出AMBNMN之间的数量关系.

∵∠C=90°

∴∠MCA+BCN=90°

AMMN,BNMN

∴∠AMC=CNB=90°

∴∠MAC+MCA=90°

∴∠MAC=BCN

AMCCNB

MAC=BCN

AMC=CMB,

AC=BC

∴△AMC≌△CNB

AM=CN,MC=BN

∴MN=MC+CN=AM+BN

(2)(7分)答: MN=BN-AM

证明:∵∠AMC=BNC=90°,

ACM+NCB=90°,

NCB+CBN=90°,

ACM=CBN,

AMC和CNB中,

ACM=CBN

AMC=BNC=90°

AC=BC,

AMCCNB,

CM =BN,

CN=AM,

MN=CM-CN=BN-AM,

∴MN=BN-AM。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网