题目内容
【题目】如图,已知二次函数过(﹣2,4),(﹣4,4)两点.
(1)求二次函数的解析式;
(2)将沿x轴翻折,再向右平移2个单位,得到抛物线,直线y=m(m>0)交于M、N两点,求线段MN的长度(用含m的代数式表示);
(3)在(2)的条件下,、交于A、B两点,如果直线y=m与、的图象形成的封闭曲线交于C、D两点(C在左侧),直线y=﹣m与、的图象形成的封闭曲线交于E、F两点(E在左侧),求证:四边形CEFD是平行四边形.
【答案】(1);(2);(3)证明见解析.
【解析】
试题分析:(1)根据待定系数法即可解决问题.
(2)先求出抛物线y2的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.
(3)用类似(2)的方法,分别求出CD、EF即可解决问题.
试题解析:(1)∵二次函数过(﹣2,4),(﹣4,4)两点,∴,解得:,∴二次函数的解析式.
(2)∵=,∴顶点坐标(﹣3,),∵将沿x轴翻折,再向右平移2个单位,得到抛物线,∴抛物线的顶点坐标(﹣1,),∴抛物线为,由,消去y整理得到,设,是它的两个根,则MN===;
(3)由,消去y整理得到,设两个根为,,则CD===,由,消去y得到,设两个根为,,则EF===,∴EF=CD,EF∥CD,∴四边形CEFD是平行四边形.
练习册系列答案
相关题目