题目内容
【题目】如图,四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD.
(1)求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由.
【答案】(1)见解析;(2)见解析;(3)△DBC是等腰三角形.见解析
【解析】
试题分析:(1)利用已知条件证明△DAB≌△EBC(ASA),根据全等三角形的对应边相等即可得到AD=BE;
(2)分别证明AD=AE,CE=CE,根据线段垂直平分线的逆定理即可解答;
(3)△DBC是等腰三角形,由△DAB≌△EBC,得到DB=EC,又有△AEC≌△ADC,得到EC=DC,所以DB=DC,即可解答.
解:(1)∵∠ABC=90°,
∴∠ABD+∠DBC=90°,
∵CE⊥BD,
∴∠BCE+∠DBC=90°,
∴∠ABD=∠BCE,
∵AD∥BC,
∴∠DAB=∠EBC,
在△DAB和△EBC中,
∴△DAB≌△EBC(ASA)
∴AD=BE
(2)∵E是AB的中点,即AE=BE,
∵BE=AD,
∴AE=AD,
∴点A在ED的垂直平分线上(到角两边相等的点在角的平分线上),
∵AB=BC,∠ABC=90°,
∴∠BAC=∠BCA=45°,
∵∠BAD=90°,
∴∠BAC=∠DAC=45°,
在△EAC和△DAC中,
,
∴△EAC≌△DAC(SAS)
∴CE=CD,
∴点C在ED的垂直平分线上
∴AC是线段ED的垂直平分线.
(3)△DBC是等腰三角形
∵△DAB≌△EBC,
∴DB=EC
∵△AEC≌△ADC,
∴EC=DC,
∴DB=DC,
∴△DBC是等腰三角形.
练习册系列答案
相关题目