题目内容

【题目】如图锐角△ABC,若∠ABC=40°,∠ACB=70°,点D、E在边AB、AC上,CD与BE交于点H.

(1)若BE⊥AC,CD⊥AB,求∠BHC的度数.
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度数.

【答案】
(1)解:∵BE⊥AC,∠ACB=70°,

∴∠EBC=90°﹣70°=20°,

∵CD⊥AB,∠ABC=40°,

∴∠DCB=90°﹣40°=50°,

∴∠BHC=180°﹣20°﹣50°=110°.


(2)解:∵BE平分∠ABC,∠ABC=40°,

∴∠EBC=20°,

∵DC平分∠ACB,∠ACB=70°,

∴∠DCB=35°,

∴∠BHC=180°﹣20°﹣35°=125°


【解析】(1)欲求∠BHC,根据∠BHC=180°-∠HBC-∠HCB,只要求出∠HBC,∠HCB即可;
(2)先根据角平分线的定义得到∠EBC=20°,∠DCB=35°,再根据三角形的内角即可求得∠BHC的度数.

【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网