题目内容
【题目】如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为__.
【答案】7+
【解析】
如图,当点F固定时,连接AC交EF于G,连接A′G,此时△CGA′的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.当CA′最小时,△CGA′的周长最小,求出CA′的最小值即可解决问题.
解:如图,当点F固定时,连接AC交EF于G,连接A′G,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.
∵四边形ABCD是矩形,
∴∠D=90°,AD=BC=6,CD=AB=8,
∴AC=,
∴△A′CG的周长的最小值=10+CA′,
当CA′最小时,△CGA′的周长最小,
∵AE=DE=EA′=3,
∴CE=,
∵CA′≥EC﹣EA′,
∴CA′≥﹣3,
∴CA′的最小值为﹣3,
∴△CGA′的周长的最小值为7+,
故答案为:7+.
练习册系列答案
相关题目
【题目】某运输公司现将一批152吨的货物运往A,B两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A,B两地的运费如下表所示:
目的地(车型) | A地(元/辆) | B地(元/辆) |
大货车 | 800 | 900 |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)
(2)现安排其中的10辆货车前往A地,其余货车前往B地,设前往A地的大货车为x辆,前往A,B两地总费用为w元,试求w与x的函数解析式.