题目内容
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=6,AB=8,求菱形ADCF的面积.
【答案】(1)详见解析;(2)24
【解析】
(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;
(2)将菱形ADCF的面积转换成△ABC的面积,再用S△ABC的面积=ABAC,结合条件可求得答案.
(1)证明:∵E是AD的中点
∴AE=DE
∵AF∥BC
∴∠AFE=∠DBE
在△AEF和△DEB中
∴△AEF≌△DEB(AAS)
∴AF=DB
∵D是BC的中点
∴BD=CD=AF
∴四边形ADCF是平行四边形
∵∠BAC=90°,
∴AD=CD=BC
∴四边形ADCF是菱形;
(2)解:设AF到CD的距离为h,
∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8
∴S菱形ADCF=CDh=BCh=S△ABC=ABAC=.
练习册系列答案
相关题目