题目内容
【题目】如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9,
(1)求证:△COD∽△CBE;
(2)求半圆O的半径的长
【答案】(1)见解析;(2)
【解析】试题分析:(1)证明DO||BE,则△COD∽△CBE.(2)利用(1)对应边成比例,求半径的长.
试题解析:
(1)解:∵CD切半圆于点D,OD为⊙O的半径,
∴CD⊥OD,
∴∠CDO=90°,
∵BE⊥CD于点E,
∴∠E=90°.
∵∠CDO=∠E=90°,∠C=∠C,
∴△COD∽△CBE.
(2)解:∵在Rt△BEC中,CE=12,BE=9,
∴CE=15,
∵△COD∽△CBE,
∴,
即,
∴r=.
练习册系列答案
相关题目