题目内容

【题目】如图,正方形ABCD的边长为3,点E在边AB上,且BE=1,若点P在对角线BD上移动,则PA+PE的最小值是

【答案】
【解析】解:作出点E关于BD的对称点E′,连接AE′与BD交于点P,此时AP+PE最小,
∵PE=PE′,
∴AP+PE=AP+PE′=AE′,
在Rt△ABE′中,AB=3,BE′=BE=1,
根据勾股定理得:AE′=
则PA+PE的最小值为
所以答案是:

【考点精析】通过灵活运用正方形的判定方法和轴对称-最短路线问题,掌握先判定一个四边形是矩形,再判定出有一组邻边相等;先判定一个四边形是菱形,再判定出有一个角是直角;已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网