题目内容

【题目】如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.
(1)求证:AP=AB;
(2)若OB=4,AB=3,求线段BP的长.

【答案】
(1)证明:∵OC=OB,

∴∠OCB=∠OBC,

∴AB是⊙O的切线,

∴OB⊥AB,

∴∠OBA=90°,

∴∠ABP+∠OBC=90°,

∵OC⊥AO,

∴∠AOC=90°,

∴∠OCB+∠CPO=90°,

∵∠APB=∠CPO,

∴∠APB=∠ABP,

∴AP=AB


(2)解:作OH⊥BC于H.

在Rt△OAB中,∵OB=4,AB=3,

∴OA= =5,

∵AP=AB=3,

∴PO=2.

在Rt△POC中,PC= =2

PCOH= OCOP,

∴OH= =

∴CH= =

∵OH⊥BC,

∴CH=BH,

∴BC=2CH=

∴PB=BC﹣PC= ﹣2 =


【解析】(1)欲证明AP=AB,只要证明∠APB=∠ABP即可;(2)作OH⊥BC于H.在Rt△POC中,求出OP、PC、OH、CH即可解决问题.
【考点精析】利用切线的性质定理对题目进行判断即可得到答案,需要熟知切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网