题目内容

【题目】在平面直角坐标系中,已知直线y=- x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
A.(0, )
B.(0, )
C.(0,3)
D.(0,4)

【答案】B
【解析】解:设折叠后B与D对应,如图,
对于直线y=-x+3,
当x=0,得y=3;
当y=0,x=4,
∴A(4,0),B(0,3),即OA=4,OB=3,
∴AB=5,
又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,对应点D,
∴AD=AB=5,则D(-1,0),则OD=1,
因为C(0,n),所以OC=n,则CD=BC=3-n,
在Rt△OCD中,OC2+OD2=CD2
n+1=(3-n),解得n=
∴点C的坐标为(0,).
故选:B.

【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网