题目内容

【题目】一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是
(1)求袋中红球的个数;
(2)求从袋中任取一个球是黑球的概率.

【答案】
(1)解:290× =10(个),

290﹣10=280(个),

(280﹣40)÷(2+1)=80(个),

280﹣80=200(个).

故袋中红球的个数是200个


(2)解:80÷290=

答:从袋中任取一个球是黑球的概率是


【解析】(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.
【考点精析】认真审题,首先需要了解概率公式(一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网