题目内容
【题目】问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.
探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为 .
(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.
(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论 .
拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.
【答案】(1)EC=EB;(2)ED=EB,理由见解析;(3)ED=EB;拓展应用:C(1,2+).
【解析】
探究结论:(1)只要证明△ACE是等边三角形即可解决问题;
(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;
(3)结论不变,证明方法类似;
拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题.
探究结论(1),如图1中,
∵∠ACB=90°,∠B=30°,
∴∠A=60°,
∵AC=AB=AE=EB,
∴△ACE是等边三角形,
∴EC=AE=EB,
故答案为:EC=EB;
(2)如图2中,结论:ED=EB.
理由:连接PE,
∵△ACP,△ADE都是等边三角形,
∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,
∴∠CAD=∠PAE,
∴△CAD≌△PAE,
∴∠ACD=∠APE=90°,
∴EP⊥AB,∵PA=PB,
∴EA=EB,∵DE=AE,
∴ED=EB;
(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,
故答案为:ED=EB;
拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA,
∵A(﹣,1),
∴∠AOH=30°,
由(2)可知,CO=CB,
∵CF⊥OB,
∴OF=FB=1,
∴可以假设C(1,n),
∵OC=BC=AB,
∴1+n2=1+(+2)2,
∴n=2+,
∴C(1,2+).